Awake Tracheal Intubation

Prof. Cyprian Mendonca

President- Society for Education in Anaesthesia UK (SEAUK)

DAS Professor of Anaesthesia and Airway Management

Featherstone Professor, Association of Anaesthetists 2016-18

Honorary Professor-The University of Warwick

University Hospitals Coventry & Warwickshire NHS Trust Coventry

Awake Tracheal intubation

Airway Topicalisation

Endoscopy skills

Awake Airway Management

- Fibreoptic bronchoscope
- Videolaryngoscope
- Direct Laryngoscope
- Fibreoptic Stylets
- Supraglottic airway
- Tracheostomy

Why airway complications?

- Poor assessment of risk
- Failure to plan for Failure
- Lack of institutional preparedness
- Failure to use awake tracheal intubation when indicated
- Multiple attempts at intubation leading can't intubate can't oxygenate

Awake Fibreoptic intubation (AFOI)

- 18 patients in whom AFOI might have offered advantages over intubation under general anaesthesia
- 15 reports where AFOI was attempted but unsuccessful due to associated complications
- Fibreoptic intubation was omitted when indicated

NAP4 recommendations

 Where Fibreoptic intubation is considered the optimal method of securing the airway, an awake technique should be considered unless contraindicated. Anaesthesia 2019 doi:10.1111/anae.14904

Guidelines

Difficult Airway Society guidelines for awake tracheal intubation (ATI) in adults

I. Ahmad^{1,2} K. El-Boghdadly,^{1,2} R. Bhagrath,³ I. Hodzovic,^{4,5} A. F. McNarry,⁶ F. Mir,⁷ E. P. O'Sullivan,⁸ A. Patel,⁹ M. Stacey¹⁰ and D. Vaughan¹¹

Anaesthesia 2022, 77, 1081-1088

doi:10.1111/anae.15820

Original Article

Analysis of a national difficult airway database

A. Sajayan, 1 (D) A. Nair, 1 (D) A. F. McNarry, 2 (D) F. Mir, 3 (D) I. Ahmad 4,5 (D) and K. El-Boghdadly 4,5 (D)

- 1 Consultant, Department of Anaesthesia, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- 2 Consultant, Department of Anaesthesia, Western General and St John's Hospitals, Edinburgh, UK
- 3 Consultant, Department of Anaesthesia, St Georges University Hospitals NHS Foundation Trust, London, UK
- 4 Consultant, Department of Anaesthesia and Peri-operative Medicine, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- 5 Honorary Senior Lecturer, King's College London, London, UK

Over 5 years 675 patients were reported

Table 3 Primary airway plan in anticip (n = 391). Values are number (proporti	5 J. 📆	391/675 = 58%
Primary airway plan		
Directlaryngoscopy	171 (//3 7%)	

Direct laryngoscopy	171 (43.7%)
Videolaryngoscopy	136 (34.8%)
Awake tracheal intubation	39 (9.9%)
Supraglottic airway	25 (6.4%)
Flexible bronchoscopic intubation under anaesthesia	9 (2.3%)
Aintree exchange catheter	3 (0.8%)
Jet ventilation/apnoeic airway surgery	2 (0.5%)
Awake videolaryngoscopy	1 (0.3%)
Not clear	5 (1.3%)

Advantages of awake technique

- Maintains airway patency
- Spontaneous breathing
- Airway protection
- Easier intubation
- Cardiovascular stability
- Neurological monitoring

Awake Tracheal Intubation

Awake FOI

Awake Videolaryngoscopy

Combined FOS & VL

Awake Tracheal Intubation

- Device selection/ skills
- Topicalisation

Advantages of flexible Fibrescope

- Flexibility
- Continuous visualization
- Less traumatic
- Can be used for oral and nasal intubation
- Can be used with other devices- via SAD or in combination with videolaryngoscope

Awake Videolaryngoscopy compared to FOI

		•
	VL	FOS
Technical skill	Easy	Manual dexterity
Equipment set up	Easy	Complex
Procedure time	Shorter	Longer
Tube passage	Under vision	Blind
Tube size	Any	6 to 6.5

Airway devices for awake tracheal intubation in adults: a systematic review and network meta-analysis

Neel Desai^{1,2,*}, Gamunu Ratnayake¹, Desire N. Onwochei^{1,2}, Kariem El-Boghdadly^{1,2} and Imran Ahmad^{1,2}

¹Department of Anaesthesia, Guy's and St Thomas' NHS Foundation Trust, London, UK and ²King's College London, London, UK

*Corresponding author. E-mail: Neel.Desai@gstt.nhs.uk

- 12 RCTs
- Intubation Time: Videostylets < Videolaryngoscopes < FOS
- No difference in first pass success rate
- They were clinically comparable for ATI

This is a clear indication for awake nasal fibreoptic

Causes of difficult airway

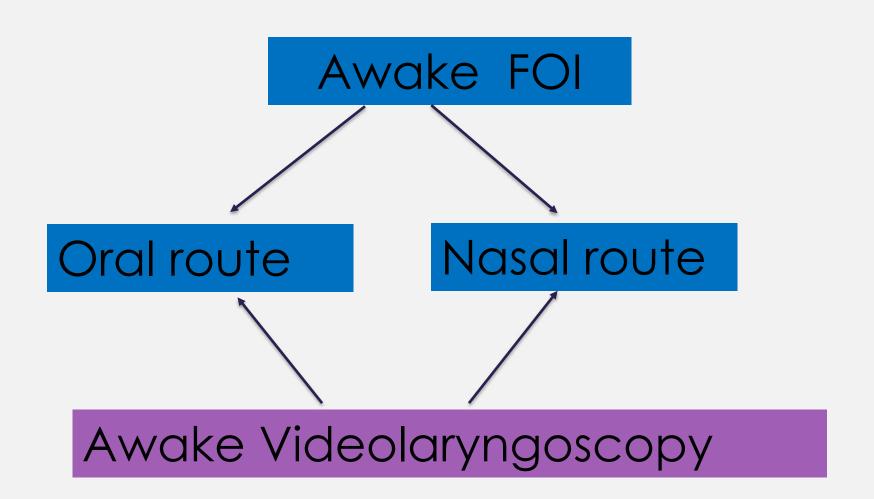
Boney features

Endoscopy - easy

Soft tissue pathology with no airway obstruction

Endoscopy- mild difficulty

Soft tissue pathology with airway obstruction


Endoscopy moderate to severe difficulty

Awake Fibreoptic Intubation

- Patient preparation
- Equipment/ drugs preparation
- Oxygenation/ monitoring
- Local anaesthesia to upper airway & sedation
- Endoscopy and local anaesthesia to lower airway
- Railroad the tube
- Check the tube position: Two point confirmation
- Secure the tube
- Induce anaesthesia

Patient Preparation

- Airway assessment
- Explanation / leaflet
- Reason for awake technique, Safety aspects, sedation, local anaesthesia & complete sleep once tube position is confirmed

Awake Tracheal Intubation Cognitive Aid

PATIENT PREPARATION	PREPERATION FOR FAILURE
□ Early oxygen delivery (consider HFNO) □ Allocation of roles □ Reliable IV access □ Optimised patient position □ Identify CTM	Second anaesthetist required? Who & how to contact if help required Verbalise Plan (ABCD) - Maximum attempts (3+1)
	Maximam accompts (3.1)
EQUIPMENT	PROCEDURE
☐ Optimised ergonomics ☐ Monitoring applied ☐ Scope/ETT/Suction/FONA Kit ☐ Sedation (if required) ☐ Emergency Drugs ☐ Plan for maintenance of anaesthesia	Sedation check at - Pre topicalisation - Pre scope insertion - Pre ETT insertion Pre induction: Visualise tracheal lumen AND check

Drs T Davies & U Ansari

University Hospitals
Coventry and Warwickshi

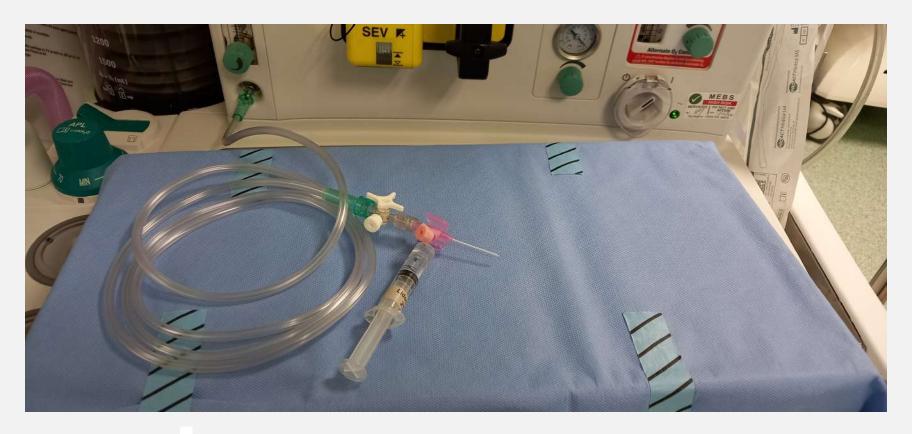
Lean Body Weight:

(https://tinyurl.com/LBWUHCW)

_____ Kg
Lidocaine MAXIMUM

total dose (9mg/Kg LBW

_____ mg


Co-Phenylcaine 2.5mls contain 125mg lidocaine

Local Anaesthesia

- Nose-nasopharynx
- Pharyngeal wall
- Base of the tongue
- Vallecula / Epiglottis (VL)
- Above the vocal Cords
- Below the vocal cords

Mackenzie technique

Mackenzie I. A new method of drug application to the nasal passage. *Anaesthesia*1998; **53**: 309–10.

Lean body weight

https://tinyurl.com/LBWUHCW

The Boer Formula:1

For males:

eLBM = 0.407W + 0.267H - 19.2

For females:

eLBM = 0.252W + 0.473H - 48.3

Maximum lidocaine dose: 9mg/kg of LBW

Conscious sedation

Aim:

Patient comfortable, sedated but obeys verbal commands and has amnesia for events

STOP

OXYGENATE

- Apply HFNO early
- Titrate HFNO from 30-70 l.min⁻¹
- Continue HFNO throughout procedure

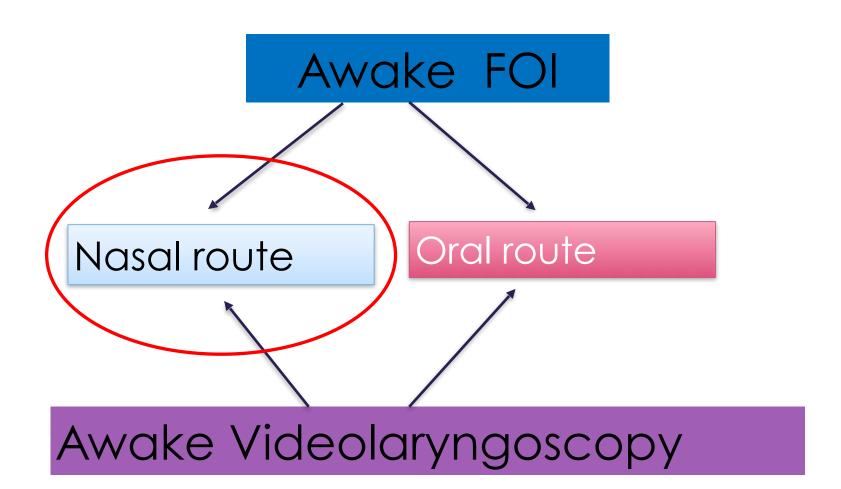
TOPICALISE

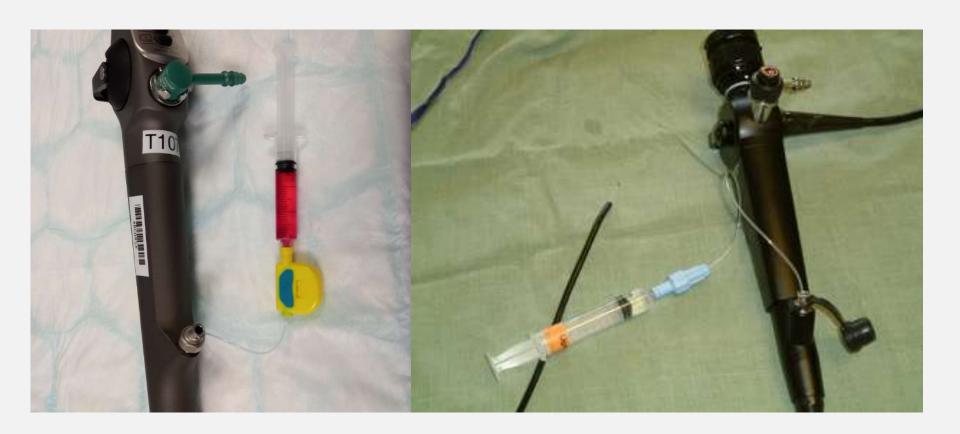
- Lidocaine 10% spray to oropharynx, tonsillar pillars, base of tongue
- 20 30 sprays (during inspiration, over 5 min)
- If nasal route: co-phenylcaine spray
- Test topicalisation atraumatically
- If inadequate, re-apply LA up to maximum dose:
 - Further 5 sprays of lidocaine 10% to tongue base
 - 2 ml lidocaine 2% (x 3) spray above, at and below vocal cords via epidural catheter/working channel of FB or using MAD

PERFORM

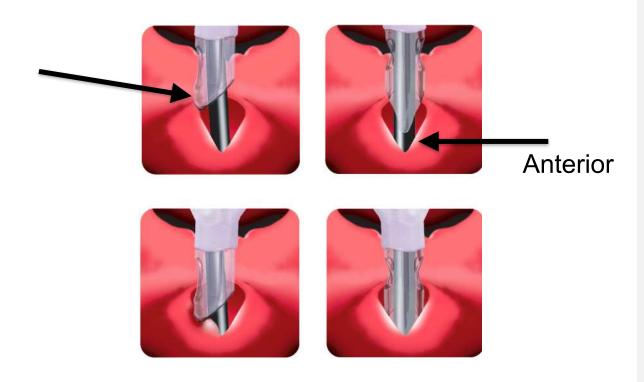
- Select appropriate tracheal tube
- · Patient sitting up
- Ensure operator can readily see patient monitor, infusion pumps and video screen
- · Clear secretions
- For ATI:FB
 - Operator positioned facing patient
 - Consider bronchoscope airway if oral route
 - Bevel facing posteriorly
- For ATI:VL
 - Operator positioned behind patient
 - Consider bougie
- Before induction of anaesthesia: two-point check

Lidocaine

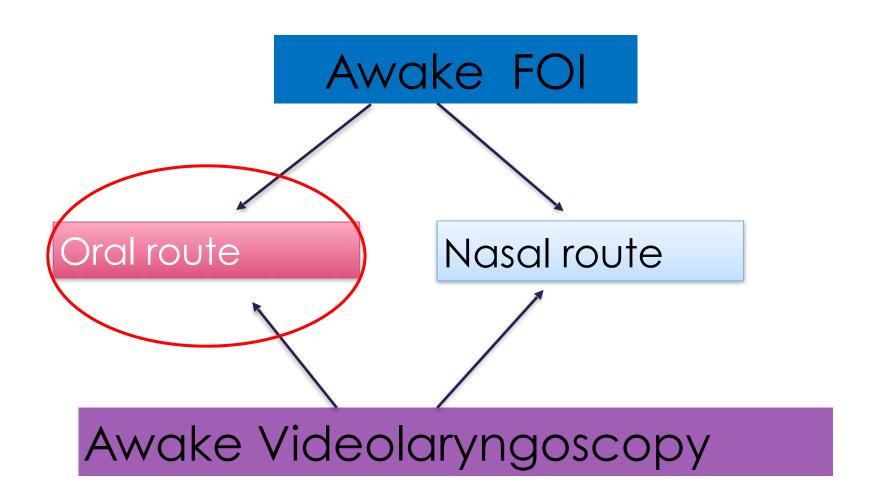

- 1 spray (0.1 ml) of 10% = 10 mg
- 1 ml of 2% = 20 mg


Co-phenylcaine

 2.5 ml = 125 mg lidocaine + 12.5 mg phenylephrine

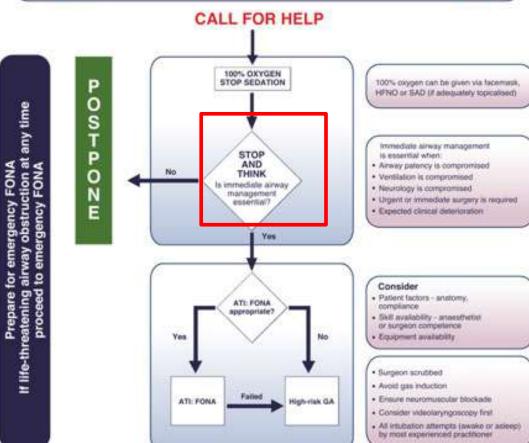

SEDATE

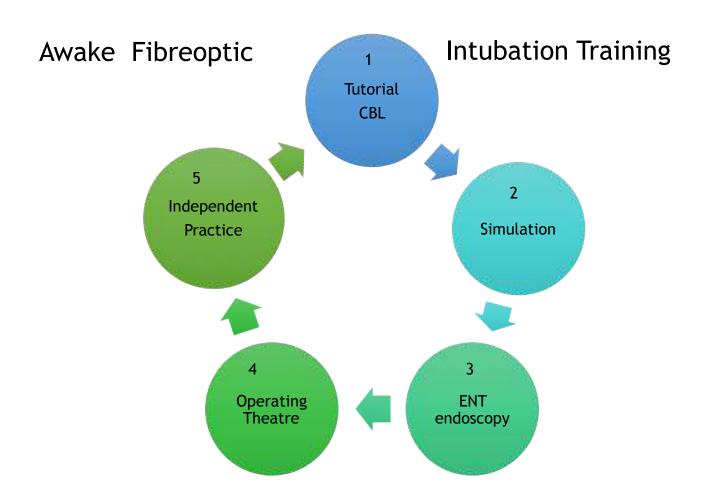
- Sedate if required
- Remifentanil TCI (Minto) Ce 1.0–3.0 ng.ml⁻¹
- If second anaesthetist present, consider adding midazolam 0.5–1 mg

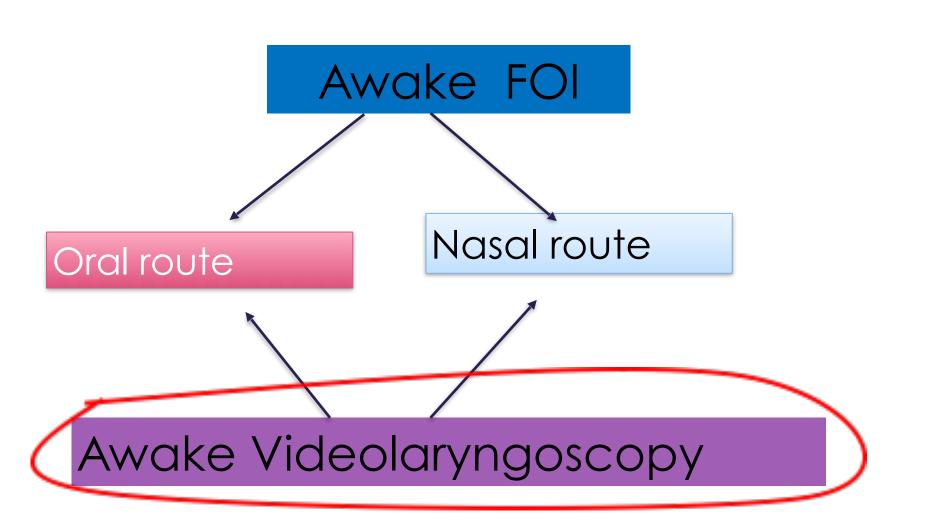


Bevel facing posteriorly reduces impingement

Difficulty in railroading the tube

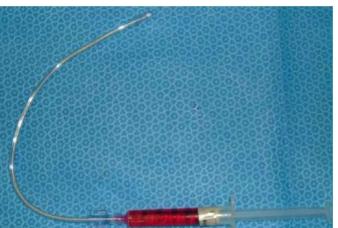


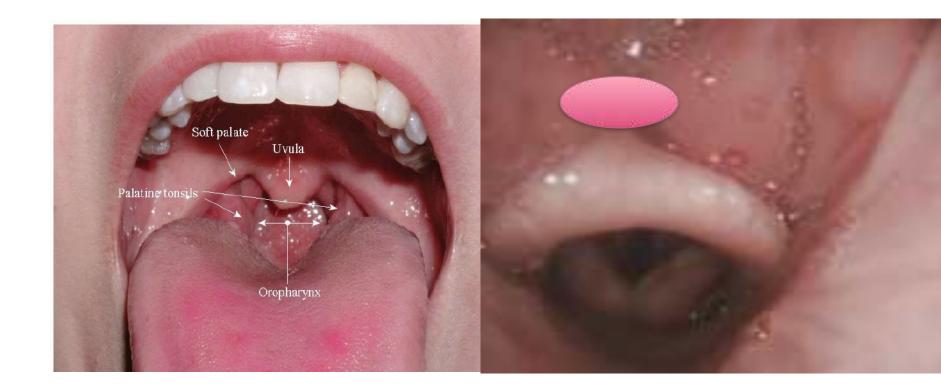

Management of unsuccessful ATI in adults

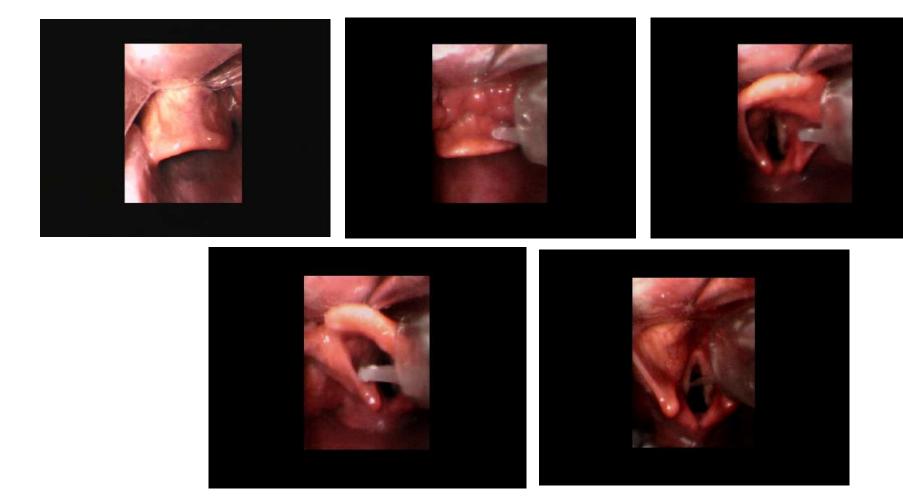



Successful awake intubation

- Airway Assessment and planning
- Back up plan
- Explanation and consent
- Oxygenation/monitoring
- Good topicalisation
- Conscious sedation
- Good endoscopy technique
- Choice of tracheal tube and railroading







Sequence of events- Videolaryngoscopy

- Sign in & Monitoring
- IV access & Midazolam 0.5 to 1 mg
- (Glycopyrolate 200 mcg is optional)
- Remifentanil TCI: 2-4 ng/ml
- 1st stage Mackenzie: 4 ml 4% lignocaine (to base of tongue, soft plate, tonsillar pillars)
- 2nd stage Mackenzie: 4-5 ml 4% lignocaine (0.5 ml spray with each breath synchronised with inspiration)
- Laryngoscopy
- Vocal cords & Tracheal LA=1-2 ml of 4% lignocaine (catheter through tube or MADgic device if required, with good 2nd stage Mackenzie, this may not be required)
- Advance the VL & tracheal tube
- Capnography to confirm the position

Key takeaways

 In an anticipated difficult airway awake tracheal intubation has highest safety profile

 Fibreoptic bronchoscope and videolaryngoscopes can be used in isolation or in combination.

Resources

To download course materials and for free airway lab sessions

www.mededcoventry.com

Coventry Airway Lab Course Resources (mededcoventry.com)

References and further reading

- •Ahmad, I. et al. (2019) 'Difficult Airway Society guidelines for awake tracheal intubation (ATI) in adults', Anaesthesia. doi: 10.1111/anae.14904.
- •Mackenzie I. A new method of drug application to the nasal passage. Anaesthesia 1998; 53: 309–10.
- •Detsky ME. et al. Will this patient be difficult to intubate? the rational clinical examination systematic review. Journal of the American Medical Association 2019; 321: 493–503
- •Mendonca C. Et al. A randomized clinical trial of the flexible fiberscope and the Pentax Airway Scope for awake oral tracheal intubation. Anaesthesia 2016;71: 908-914
- •Kajekar P, Mendonca C, Danha R, Hillermann C. Awake tracheal intubation using Pentax airway scope in 30 patients: A case series. Indian Journal of Anaesthesia 2014; 58:447-51
- •Alhomary, M. et al. (2018) 'Videolaryngoscopy vs. fibreoptic bronchoscopy for awake tracheal intubation: a systematic review and meta-analysis', *Anaesthesia*, 73(9), pp. 1151–1161. doi: 10.1111/anae.14299.